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Abstract—[n this paper a numerical method for optimizing the shape of a weld surface is presented.
The optimal shape design of two cylindrical ¢lements joined by welding is considered in order to
minimize the stress concentration factor along the weld. The problem is solved using the finite
element method.

INTRODUCTION

In the design process an optimization problem concerning the shape of the weld joining
two or more machine or tool elements is often undertaken. These are plane or axisymmetric
clements working in conditions of loading. The shape optimization of plane or axisymmetric
clements is directed to minimize their stress concentration factor. This problem is under-
taken in the works of Dig (1986), Fiacco and McCormich (1968), Francavilla et al. (1975)
and Na er al. (1983).

A lot of the published papers on optimization problems use the finite element method
to analyse the structure (see the works of Dems and Mroz (1978). Dems (1980), and Dig
(1986 for instance). In order to gencrate any boundary shape it is postulated that the
constitutive parts are cither circles or straight lines. The whole boundary is defined by the
data of particular points, some of which are mobile (see Braibat and Fleury (1984), and
Bhavikatti and Ramakrishnan (1980)). Shape optimization s more complex than pure
sizing optimization. Since the shapes are continuously changing in the design process, a
careful consideration has to be paid to describe the changing boundary shape. In this paper
the following problem is analysed. It considers two machine cylindrical elements which are
first welded and then subjected to machining. The problem is to determine the shape of the
weld surface between two cylindrical elements of different diameters and thermal stresses
arising from the welding process.

The shape optimization problem can be stated as
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where ¢ is the objective function, m, the constraint function describing the ith structural
response, V a vector defining the shape of the structure, Vi and VY are the lower and the
upper limits of the shape variables which may reflect fabrication or analysis limitations. d;
and d,, are shape variables, NBC the number of behavioural constraints, NSV the number
of shape variables, and NGC the number of geometrical constraints. V; will be considered
as the global coordinate vector describing the structural shape. Then d; and d,; are shape
variables. which depend on the moving directions of the control nodes.
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THERMAL STRESS ANALYSIS

At this point the theory for welding stress calculations is briefly presented. Those
readers interested in other theoretical aspects similar to those presented here can acquaint
themselves with details given in the works of Argyris er af. (1977, 1978, 1981. 1982, 1985)
and Kleiber and Stuzalec (1983, 1984). Consider the equilibrium equation. The quasi-static
motion of an elementary volume is governed by the rate form of equilibrium between stress
¢ and body forces p

dive+p=0. (3)
For thermoelastic—viscoplastic material behaviour the stress rate is derived from the additive

decomposition of the total strain rate ¥ tnto elastic &, viscoplastic #.,. and thermal 4y strain
rate components

¥y =&+, +ic 4
where
i=[ 'a (3
. ufd
Ny = 3 (”’v - l)“’.t (6)
i = aAT 7
6’ = i6la, (¥)

peis the viscosity, a, the yicld stress, o the stress deviator, a the thermal expansion coetlicient,
AT the temperature increment, and superscript T denotes the transpose vector.
The viscoplastic yield surface ts assumed

(@0, 1) = iajoy—a] >0 (9)
and the hardening rule

C.( T)'ivp

= _ , (10)
(1+(C(T)0,(T)) ™)

6)’("\‘[" T)

where

=2 2T

,lvp - ,"’»p"\.;v
The values of the functions C(T) and ¢,(T) can be obtained from the uniaxial test (sce
Argyris er al., 1977, 1978, 1981, 1982, 1985 for instance). The spatial discretization of the
quasi-static motion with finite clement expansions of the displacement ficld leads to the
well-known equations of incremental equilibrium for the unknown nodal velocities U

KU=P +P, (1)
where £ denotes the stiffness matrix as a function of the current temperature field, P,

represents the thermal driving force due to thermal straining, and P, the residual forces due
to the clastic stress.
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Geometric and mechanical relationships

Recall that the fundamental finite element equation for the solid element describing
the relationships between displacements and loads is of the form based on the textbook of
Zienkiewicz (1977)

KU=P (12)

where K is the structural stiffness matrix, U the unknown nodal displacement vector, and
P the generalized load vector. Both K and P are function of the shape variables V.
Equations (12) and (13) are two linear systems of equations. A specific displacement s can
be expressed as a linear combination of U

s =qU (13)

where ¢ is a constant matrix for all load cases.
The stress vector at a certain point in one of the structural finite elements can also be
expressed as

o=y"U (14)
where ¢” is the element stress matrix depending on the element nodal forces and on the

clement stiffness matrix.
Difterentiating eqn (12) with respect to Vy

cu U N0 Y e
v & ((n",( - l’:V,‘ Uj=& 'F, (15
where
aop oK
O e - l
o v av, U (16)

represents a pseudo-load matrix,
Differentiating eqns (13) and (14) with respect to V) furnishes

‘s e 17
ov, =& an
de o .
0 “(K~'F,). 8
v, ¢?;ka+" (K'F,) (18)

Equations (17) and (18) can also be written in another form

ARV 19

av, kv (19
de  Q¢°
B Vo 20
AV, (WkU+(F,,_.) (20)

where
*=K'a
Ve=K'g (21)
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represent the virtual displacement matrices under virtual loads K™ '¢ and K~ '@, respec-
tively.

Analysing the geometric relationships one can recall that assuming global dis-
placements u for any point in a two-dimensional finite element, one has

u=NU (2

where U is the vector of nodal displacements and ¥ the shape function matrix. The form
of ¥ can be found in the textbook of Zienkiewicz {1977) for instance. The strain for any
point is

¢ = BU 23

where the form of the matrix B is given by Zienkiewicz (1977) for instance. The element
stiffness is taken from the work of Zienkiewicz (1977)

K= LETQB dQ = ; B DB det J'W, 24

where [ is the corresponding elastic or clastic-plastic matrix, {1 the volume of the finite
element, & stands for the Gaussian integration points, det J* the Jacobian determinant, and
W* the weighting cocflicient at k.

The nodal force vector is

P = j NTEdE@Q) = T N*'f% det St (25)
XY &

where fis the vector of forees acting on surface Q. Supposing that mechanical properties
of the material are preseribed and do not change during the optimization process, then the
derivatives of the objective function, and &, ¢" and P for cach clement with respect to the
shape variable ¥, can be obtained in the following way:

Sy’ o8
S ptE 3
ov, T Par 26)

where

B VEY (2B OX, 0B Y, 0B 0B X,
= e ] = — =) e ! )
v =L (ox “’“ay, OV) Z((ax ay,) 3V [ D @7

X.. Y, show the element nodes, and NEN is the number of element nodes.
Based on éB/0V, onc obtains

é J v k k
v = m?,'. (g&" DB* det J“W)

o8t
=>;(w DB det JfW*r 4+ 13"'@ det JEw*

Bkudct VA

i

+ 8 DB W"), J=L...,NMN (28)

where NMN is the number of master nodes



Shape optimization of weld surface g

cP ¢ ¢
— =Y N (" det JHYW* . j=1.....VMN. 29
cl ; v, { J ! (29)

J

Shape representation

The method used to describe the shape of the structure is the key element in the process
of obtaining the optimum shape. In this paper boundary nodes are used for shape
representation. Use of coordinates for boundary nodes in the finite element model as shape
variables is the earliest method used. The approach is simple and instinctive, and associated
with the finite element method (Prasad and Haftka. 1979).

Solution method

The shape optimization problem represented by eqn (1) can be transformed into a
sequential unconstrained optimization problem by using an extended penalty function like in
the works of Dig (1986). Qucau and Trompette (1980). and Ramakrishnan and Francavilla
(1974). It may be written as

min A(V.r) = ¢(V) +rG(V) (30)

where
GV) =Y (g,VN"" il g(V) =g
1

GVY=3Y 2—=g,V)gs Dga' if g,(V) <gs

go is & constant called the transition paramcter, r the response factor, and ¢,(V) the
constraint functions. For further details refer to the papers of Dig (1986) and Queau and
Trompette (1980).

NUMERICAL EXAMPLE

In practice. welding stresses and deformations in all points of the welded joint should
be in the clastic range. External loading should lead to additional elastic stresses. Therefore,
such a model of the welded joint is analysed in this paper. It should be noted that sometimes
plastic deformations within the weld can appeuar. Consider two thick-walled cylindrical
clements which have to be joined by a welding process. A scheme and the dimensions of
these elements are presented in Fig. 1. The properties of the base material and the filler
metal assumed for numerical analysis are given in Figs 2 and 3. The elements after the
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Fig. |. Dimensions of two cylindrical clements subjected to welding.
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Fig. 2. Propertics of the base material assumed for the analysis: (@) thermal conductivity k(77 and
heat capacity ¢, (1) ; (b)Y imtial a,(7) and maximum yield limit o, (77 (¢) clastic modulus E(7T)
and Poisson’s ratio v( 1) ; (d) lincar coceflicient of thermal expansion 2( 7).
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Fig. 3. Propertics of the filler metal assumed for the analysis: (a) thermal conductivity k(7 and
heat capacity ¢, p(T): (b) initial @o(T) and maximum o, (T) yicld limit: (¢) elastic modulus E(T)
and Poisson’s ratio v(T) : (d) linear coefficient of thermal expansion 2( 7).



Fig. 4. Cylindrical elements after welding before machining undcergoing axial toading.
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Fig. 7. Stresses on line a-b with external loading.
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Fig. 8. An analysis of optimal shape of the weld. Curves 1-4 show the steps in the optimization
process.
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Fig. 9. The distribution of stresses for steps {4 shown in Fig. &,

welding process are shown in Fig. 4. For the analysis of welding stresses the finite element
mesh shown in Fig. 5 is used. This mesh was also used for an optimal design of the
shape. Simple triangular clements with linear shape functions are used here. The following
conditions of welding were discussed @ gross heat input, 1.6 MJ m '; assumed number of
passes, 1. Figure 6 supplics information concerning residual stresses after welding. Figure
7 presents stresses on the analysed boundary line in the weld, i.e. between points a and b
in Fig. 4 tor an external loading of 60 MPa. As can be scen the stress distribution in the
weld is not proper.

This is the reason that by using 4 machining process one should change the weld line
and try to decrease stress concentration on this boundary line. It should be noted that
additional stresses obtained by the machining process are not analysed here. Figure 8 shows
different shapes for determining a machining process and indicates the optimal shape of
the weld. Curves 1-4 show the steps in the optimization process. Figure 9 presents the
distribution of stresses on line a-b (see Fig. 4) for different shapes of these lines. It can be
seen that the most advantageous shape is that presented in Fig. 8 —curve 4. Equivalent von
Mises stress for this curve varies over a small range. For the considered joint this kind of
weld shape should be used in welding constructions.

CONCLUDING REMARKS

The optimization problems have practical significance and application in welding
processes. The work of welding construction depends mainly on the proper design of the
weld. This paper shows how one can use computer methods to improve the stress dis-
tribution in welds joining axisymmetric machine elements. The paper indicates the method
of the analysis for various kinds of welds and gives an example for the butt joint. Defor-
mations in the weld are normally in the clastic range. Therefore one can use the linear
model for optimizing the shape of the weld.
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